Optimization, physicochemical characterization and in vivoassessment of spray dried emulsion: A step toward bioavailability augmentation and gastric toxicity minimization


The limited solubility of BCS class II drugs diminishes their dissolution and thus reduces their bioavailability. Our aim in this study was to develop and optimize a spray dried emulsion containing indomethacin as a model for Class II drugs, Labrasol®/Transuctol® mixture as the oily phase, and maltodextrin as a solid carrier. The optimization was carried out using a 23full factorial design based on two independent variables, the percentage of carrier and concentration of Poloxamer® 188. The effect of the studied parameters on the spray dried yield, loading efficiency and in vitro release were thoroughly investigated. Furthermore, physicochemical characterization of the optimized formulation was performed. In vivo bioavailability, ulcerogenic capability and histopathological features were assessed. The results obtained pointed out that poloxamer 188 concentration in the formulation was the predominant factor affecting the dissolution release, whereas the drug loading was driven by the carrier concentration added. Moreover, the yield demonstrated a drawback by increasing both independent variables studied. The optimized formulation presented a complete release within two minutes thus suggesting an immediate release pattern as well, the formulation revealed to be uniform spherical particles with an average size of 7.5 μm entrapping the drug in its molecular state as demonstrated by the DSC and FTIR studies. The in vivo evaluation, demonstrated a 10-fold enhancement in bioavailability of the optimized formulation, with absence of ulcerogenic side effect compared to the marketed product. The results provided an evidence for the significance of spray dried emulsion as a leading strategy for improving the solubility and enhancing the bioavailability of class II drugs.


Mohammed M. Mehanna


Jana Elwattar, Hoda A. Elmaradny

Journal/Conference Information

International Journal of Pharmaceutics,Volume 496, Issue 2, Pages 766–779